Content-Based Image and Video Retrieval PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Content-Based Image and Video Retrieval PDF full book. Access full book title Content-Based Image and Video Retrieval by Oge Marques. Download full books in PDF and EPUB format.

Content-Based Image and Video Retrieval

Content-Based Image and Video Retrieval PDF Author: Oge Marques
Publisher: Springer Science & Business Media
ISBN: 9781402070044
Category : Computers
Languages : en
Pages : 208
Book Description
Content-Based Image And Video Retrieval addresses the basic concepts and techniques for designing content-based image and video retrieval systems. It also discusses a variety of design choices for the key components of these systems. This book gives a comprehensive survey of the content-based image retrieval systems, including several content-based video retrieval systems. The survey includes both research and commercial content-based retrieval systems. Content-Based Image And Video Retrieval includes pointers to two hundred representative bibliographic references on this field, ranging from survey papers to descriptions of recent work in the area, entire books and more than seventy websites. Finally, the book presents a detailed case study of designing MUSE–a content-based image retrieval system developed at Florida Atlantic University in Boca Raton, Florida.

Content-Based Image and Video Retrieval

Content-Based Image and Video Retrieval PDF Author: Oge Marques
Publisher: Springer Science & Business Media
ISBN: 9781402070044
Category : Computers
Languages : en
Pages : 208
Book Description
Content-Based Image And Video Retrieval addresses the basic concepts and techniques for designing content-based image and video retrieval systems. It also discusses a variety of design choices for the key components of these systems. This book gives a comprehensive survey of the content-based image retrieval systems, including several content-based video retrieval systems. The survey includes both research and commercial content-based retrieval systems. Content-Based Image And Video Retrieval includes pointers to two hundred representative bibliographic references on this field, ranging from survey papers to descriptions of recent work in the area, entire books and more than seventy websites. Finally, the book presents a detailed case study of designing MUSE–a content-based image retrieval system developed at Florida Atlantic University in Boca Raton, Florida.

Multimedia Systems and Content-based Image Retrieval

Multimedia Systems and Content-based Image Retrieval PDF Author: Sagarmay Deb
Publisher: IGI Global
ISBN: 1591401569
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
Business intelligence has always been considered an essential ingredient for success. However, it is not until recently that the technology has enabled organizations to generate and deploy intelligence for global competition. These technologies can be leveraged to create the intelligent enterprises of the 21st century that will not only provide excellent and customized services to their customers, but will also create business efficiency for building relationships with suppliers and other business partners on a long term basis. Creating such intelligent enterprises requires the understanding and integration of diverse enterprise components into cohesive intelligent systems. Anticipating that future enterprises need to become intelligent, Intelligent Enterprises of the 21st Century brings together the experiences and knowledge from many parts of the world to provide a compendium of high quality theoretical and applied concepts, methodologies, and techniques that help diffuse knowledge and skills required to create and manage intelligent enterprises of the 21st century for gaining sustainable competitive advantage in a global environment. This book is a comprehensive compilation of the state of the art vision and thought processes needed to design and manage globally competitive business organizations.

Content-Based Image Retrieval

Content-Based Image Retrieval PDF Author: Vipin Tyagi
Publisher: Springer
ISBN: 9811067597
Category : Computers
Languages : en
Pages : 378
Book Description
The book describes several techniques used to bridge the semantic gap and reflects on recent advancements in content-based image retrieval (CBIR). It presents insights into and the theoretical foundation of various essential concepts related to image searches, together with examples of natural and texture image types. The book discusses key challenges and research topics in the context of image retrieval, and provides descriptions of various image databases used in research studies. The area of image retrieval, and especially content-based image retrieval (CBIR), is a very exciting one, both for research and for commercial applications. The book explains the low-level features that can be extracted from an image (such as color, texture, shape) and several techniques used to successfully bridge the semantic gap in image retrieval, making it a valuable resource for students and researchers interested in the area of CBIR alike.

Artificial Intelligence for Maximizing Content Based Image Retrieval

Artificial Intelligence for Maximizing Content Based Image Retrieval PDF Author: Ma, Zongmin
Publisher: IGI Global
ISBN: 1605661759
Category : Computers
Languages : en
Pages : 450
Book Description
Discusses major aspects of content-based image retrieval (CBIR) using current technologies and applications within the artificial intelligence (AI) field.

Semantic and Interactive Content-based Image Retrieval

Semantic and Interactive Content-based Image Retrieval PDF Author: Björn Barz
Publisher: Cuvillier Verlag
ISBN: 3736963467
Category : Computers
Languages : en
Pages : 322
Book Description
Content-based Image Retrieval (CBIR) ist ein Verfahren zum Auffinden von Bildern in großen Datenbanken wie z. B. dem Internet anhand ihres Inhalts. Ausgehend von einem vom Nutzer bereitgestellten Anfragebild, gibt das System eine sortierte Liste ähnlicher Bilder zurück. Der Großteil moderner CBIR-Systeme vergleicht Bilder ausschließlich anhand ihrer visuellen Ähnlichkeit, d.h. dem Vorhandensein ähnlicher Texturen, Farbkompositionen etc. Jedoch impliziert visuelle Ähnlichkeit nicht zwangsläufig auch semantische Ähnlichkeit. Zum Beispiel können Bilder von Schmetterlingen und Raupen als ähnlich betrachtet werden, weil sich die Raupe irgendwann in einen Schmetterling verwandelt. Optisch haben sie jedoch nicht viel gemeinsam. Die vorliegende Arbeit stellt eine Methode vor, welche solch menschliches Vorwissen über die Semantik der Welt in Deep-Learning-Verfahren integriert. Als Quelle für dieses Wissen dienen Taxonomien, die für eine Vielzahl von Domänen verfügbar sind und hierarchische Beziehungen zwischen Konzepten kodieren (z.B., ein Pudel ist ein Hund ist ein Tier etc.). Diese hierarchiebasierten semantischen Bildmerkmale verbessern die semantische Konsistenz der CBIR-Ergebnisse im Vergleich zu herkömmlichen Repräsentationen und Merkmalen erheblich. Darüber hinaus werden drei verschiedene Mechanismen für interaktives Image Retrieval präsentiert, welche die den Anfragebildern inhärente semantische Ambiguität durch Einbezug von Benutzerfeedback auflösen. Eine der vorgeschlagenen Methoden reduziert das erforderliche Feedback mithilfe von Clustering auf einen einzigen Klick, während eine andere den Nutzer kontinuierlich involviert, indem das System aktiv nach Feedback zu denjenigen Bildern fragt, von denen der größte Erkenntnisgewinn bezüglich des Relevanzmodells erwartet wird. Die dritte Methode ermöglicht dem Benutzer die Auswahl besonders interessanter Bildbereiche zur Fokussierung der Ergebnisse. Diese Techniken liefern bereits nach wenigen Feedbackrunden deutlich relevantere Ergebnisse, was die Gesamtmenge der abgerufenen Bilder reduziert, die der Benutzer überprüfen muss, um relevante Bilder zu finden. Content-based image retrieval (CBIR) aims for finding images in large databases such as the internet based on their content. Given an exemplary query image provided by the user, the retrieval system provides a ranked list of similar images. Most contemporary CBIR systems compare images solely by means of their visual similarity, i.e., the occurrence of similar textures and the composition of colors. However, visual similarity does not necessarily coincide with semantic similarity. For example, images of butterflies and caterpillars can be considered as similar, because the caterpillar turns into a butterfly at some point in time. Visually, however, they do not have much in common. In this work, we propose to integrate such human prior knowledge about the semantics of the world into deep learning techniques. Class hierarchies serve as a source for this knowledge, which are readily available for a plethora of domains and encode is-a relationships (e.g., a poodle is a dog is an animal etc.). Our hierarchy-based semantic embeddings improve the semantic consistency of CBIR results substantially compared to conventional image representations and features. We furthermore present three different mechanisms for interactive image retrieval by incorporating user feedback to resolve the inherent semantic ambiguity present in the query image. One of the proposed methods reduces the required user feedback to a single click using clustering, while another keeps the human in the loop by actively asking for feedback regarding those images which are expected to improve the relevance model the most. The third method allows the user to select particularly interesting regions in images. These techniques yield more relevant results after a few rounds of feedback, which reduces the total amount of retrieved images the user needs to inspect to find relevant ones.

State-of-the-Art in Content-Based Image and Video Retrieval

State-of-the-Art in Content-Based Image and Video Retrieval PDF Author: Remco C. Veltkamp
Publisher: Springer Science & Business Media
ISBN: 9401596646
Category : Computers
Languages : en
Pages : 345
Book Description
Images and video play a crucial role in visual information systems and multimedia. There is an extraordinary number of applications of such systems in entertainment, business, art, engineering, and science. Such applications often involved large image and video collections, and therefore, searching for images and video in large collections is becoming an important operation. Because of the size of such databases, efficiency is crucial. We strongly believe that image and video retrieval need an integrated approach from fields such as image processing, shape processing, perception, database indexing, visualization, and querying, etc. This book contains a selection of results that was presented at the Dagstuhl Seminar on Content-Based Image and Video Retrieval, in December 1999. The purpose of this seminar was to bring together people from the various fields, in order to promote information exchange and interaction among researchers who are interested in various aspects of accessing the content of image and video data. The book provides an overview of the state of the art in content-based image and video retrieval. The topics covered by the chapters are integrated system aspects, as well as techniques from image processing, computer vision, multimedia, databases, graphics, signal processing, and information theory. The book will be of interest to researchers and professionals in the fields of multimedia, visual information (database) systems, computer vision, and information retrieval.

Feature Dimension Reduction for Content-Based Image Identification

Feature Dimension Reduction for Content-Based Image Identification PDF Author: Das, Rik
Publisher: IGI Global
ISBN: 1522557768
Category : Computers
Languages : en
Pages : 284
Book Description
Image data has portrayed immense potential as a foundation of information for numerous applications. Recent trends in multimedia computing have witnessed a rapid growth in digital image collections, resulting in a need for increased image data management. Feature Dimension Reduction for Content-Based Image Identification is a pivotal reference source that explores the contemporary trends and techniques of content-based image recognition. Including research covering topics such as feature extraction, fusion techniques, and image segmentation, this book explores different theories to facilitate timely identification of image data and managing, archiving, maintaining, and extracting information. This book is ideally designed for engineers, IT specialists, researchers, academicians, and graduate-level students seeking interdisciplinary research on image processing and analysis.

Integrated Region-Based Image Retrieval

Integrated Region-Based Image Retrieval PDF Author: James Z. Wang
Publisher: Springer Science & Business Media
ISBN: 1461516412
Category : Computers
Languages : en
Pages : 178
Book Description
Content-based image retrieval is the set of techniques for retrieving relevant images from an image database on the basis of automatically derived image features. The need for efficient content-based image re trieval has increased tremendously in many application areas such as biomedicine, the military, commerce, education, and Web image clas sification and searching. In the biomedical domain, content-based im age retrieval can be used in patient digital libraries, clinical diagnosis, searching of 2-D electrophoresis gels, and pathology slides. I started my work on content-based image retrieval in 1995 when I was with Stanford University. The project was initiated by the Stan ford University Libraries and later funded by a research grant from the National Science Foundation. The goal was to design and implement a computer system capable of indexing and retrieving large collections of digitized multimedia data available in the libraries based on the media contents. At the time, it seemed reasonable to me that I should discover the solution to the image retrieval problem during the project. Experi ence has certainly demonstrated how far we are as yet from solving this basic problem.

Semantic and Interactive Content-based Image Retrieval

Semantic and Interactive Content-based Image Retrieval PDF Author: Björn Barz
Publisher:
ISBN: 9783736973466
Category :
Languages : en
Pages : 322
Book Description


Intelligent Image Databases

Intelligent Image Databases PDF Author: Yihong Gong
Publisher: Springer Science & Business Media
ISBN: 9780792380153
Category : Computers
Languages : en
Pages : 154
Book Description
Intelligent Image Databases: Towards Advanced Image Retrieval addresses the image feature selection issue in developing content-based image retrieval systems. The book first discusses the four important issues in developing a complete content-based image retrieval system, and then demonstrates that image feature selection has significant impact on the remaining issues of system design. Next, it presents an in-depth literature survey on typical image features explored by contemporary content-based image retrieval systems for image matching and retrieval purposes. The goal of the survey is to determine the characteristics and the effectiveness of individual features, so as to establish guidelines for future development of content-based image retrieval systems. Intelligent Image Databases: Towards Advanced Image Retrieval describes the Advanced Region-Based Image Retrieval System (ARBIRS) developed by the authors for color images of real-world scenes. They have selected image regions for building ARBIRS as the literature survey suggests that prominent image regions, along with their associated features, provide a higher probability for achieving a higher level content-based image retrieval system. A major challenge in building a region-based image retrieval system is that prominent regions are rather difficult to capture in an accurate and error-free condition, particularly those in images of real-world scenes. To meet this challenge, the book proposes an integrated approach to tackle the problem via feature capturing, feature indexing, and database query. Through comprehensive system evaluation, it is demonstrated how these systematically integrated efforts work effectively to accomplish advanced image retrieval. Intelligent Image Databases: Towards Advanced Image Retrieval serves as an excellent reference and may be used as a text for advanced courses on the topic.