Hyers-Ulam Stability of Ordinary Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Hyers-Ulam Stability of Ordinary Differential Equations PDF full book. Access full book title Hyers-Ulam Stability of Ordinary Differential Equations by Arun Kumar Tripathy. Download full books in PDF and EPUB format.

Hyers-Ulam Stability of Ordinary Differential Equations

Hyers-Ulam Stability of Ordinary Differential Equations PDF Author: Arun Kumar Tripathy
Publisher: CRC Press
ISBN: 1000386902
Category : Mathematics
Languages : en
Pages : 114
Book Description
Hyers-Ulam Stability of Ordinary Differential Equations undertakes an interdisciplinary, integrative overview of a kind of stability problem unlike the existing so called stability problem for Differential equations and Difference Equations. In 1940, S. M. Ulam posed the problem: When can we assert that approximate solution of a functional equation can be approximated by a solution of the corresponding equation before the audience at the University of Wisconsin which was first answered by D. H. Hyers on Banach space in 1941. Thereafter, T. Aoki, D. H. Bourgin and Th. M. Rassias improved the result of Hyers. After that many researchers have extended the Ulam's stability problems to other functional equations and generalized Hyer's result in various directions. Last three decades, this topic is very well known as Hyers-Ulam Stability or sometimes it is referred Hyers-Ulam-Rassias Stability. This book synthesizes interdisciplinary theory, definitions and examples of Ordinary Differential and Difference Equations dealing with stability problems. The purpose of this book is to display the new kind of stability problem to global audience and accessible to a broader interdisciplinary readership for e.g those are working in Mathematical Biology Modeling, bending beam problems of mechanical engineering also, some kind of models in population dynamics. This book may be a starting point for those associated in such research and covers the methods needed to explore the analysis. Features: The state-of-art is pure analysis with background functional analysis. A rich, unique synthesis of interdisciplinary findings and insights on resources. As we understand that the real world problem is heavily involved with Differential and Difference equations, the cited problems of this book may be useful in a greater sense as long as application point of view of this Hyers-Ulam Stability theory is concerned. Information presented in an accessible way for students, researchers, scientists and engineers.

Hyers-Ulam Stability of Ordinary Differential Equations

Hyers-Ulam Stability of Ordinary Differential Equations PDF Author: Arun Kumar Tripathy
Publisher: CRC Press
ISBN: 1000386902
Category : Mathematics
Languages : en
Pages : 114
Book Description
Hyers-Ulam Stability of Ordinary Differential Equations undertakes an interdisciplinary, integrative overview of a kind of stability problem unlike the existing so called stability problem for Differential equations and Difference Equations. In 1940, S. M. Ulam posed the problem: When can we assert that approximate solution of a functional equation can be approximated by a solution of the corresponding equation before the audience at the University of Wisconsin which was first answered by D. H. Hyers on Banach space in 1941. Thereafter, T. Aoki, D. H. Bourgin and Th. M. Rassias improved the result of Hyers. After that many researchers have extended the Ulam's stability problems to other functional equations and generalized Hyer's result in various directions. Last three decades, this topic is very well known as Hyers-Ulam Stability or sometimes it is referred Hyers-Ulam-Rassias Stability. This book synthesizes interdisciplinary theory, definitions and examples of Ordinary Differential and Difference Equations dealing with stability problems. The purpose of this book is to display the new kind of stability problem to global audience and accessible to a broader interdisciplinary readership for e.g those are working in Mathematical Biology Modeling, bending beam problems of mechanical engineering also, some kind of models in population dynamics. This book may be a starting point for those associated in such research and covers the methods needed to explore the analysis. Features: The state-of-art is pure analysis with background functional analysis. A rich, unique synthesis of interdisciplinary findings and insights on resources. As we understand that the real world problem is heavily involved with Differential and Difference equations, the cited problems of this book may be useful in a greater sense as long as application point of view of this Hyers-Ulam Stability theory is concerned. Information presented in an accessible way for students, researchers, scientists and engineers.

Ulam Stability of Operators

Ulam Stability of Operators PDF Author: Janusz Brzdek
Publisher: Academic Press
ISBN: 0128098309
Category : Mathematics
Languages : en
Pages : 236
Book Description
Ulam Stability of Operators presents a modern, unified, and systematic approach to the field. Focusing on the stability of functional equations across single variable, difference equations, differential equations, and integral equations, the book collects, compares, unifies, complements, generalizes, and updates key results. Whenever suitable, open problems are stated in corresponding areas. The book is of interest to researchers in operator theory, difference and functional equations and inequalities, differential and integral equations. Allows readers to establish expert knowledge without extensive study of other books Presents complex math in simple and clear language Compares, generalizes and complements key findings Provides numerous open problems

Recent Advances in Differential Equations and its Applications (DEAPP–2017)

Recent Advances in Differential Equations and its Applications (DEAPP–2017) PDF Author: Dr. K.S. Lakshmi
Publisher: Allied Publishers
ISBN: 9385926780
Category : Mathematics
Languages : en
Pages : 196
Book Description
Differential Equations serve as mathematical models for virtually any natural or physical phenomena in science and technology and has applications even in diverse fields such as economics, medicine, ecology, etc. The seminar was organized to throw light on the recent advances in the applications of differential equations and to provide a platform for sharing the knowledge with experts in the field with young students and researchers. The Researchers and educators in the field of differential equations were invited to attend and share their rich experience. As for everything else. so for a mathematical theory. beauty can be perceived but not explained.

Frontiers in Functional Equations and Analytic Inequalities

Frontiers in Functional Equations and Analytic Inequalities PDF Author: George A. Anastassiou
Publisher: Springer Nature
ISBN: 3030289508
Category : Mathematics
Languages : en
Pages : 753
Book Description
This volume presents cutting edge research from the frontiers of functional equations and analytic inequalities active fields. It covers the subject of functional equations in a broad sense, including but not limited to the following topics: Hyperstability of a linear functional equation on restricted domains Hyers–Ulam’s stability results to a three point boundary value problem of nonlinear fractional order differential equations Topological degree theory and Ulam’s stability analysis of a boundary value problem of fractional differential equations General Solution and Hyers-Ulam Stability of Duo Trigintic Functional Equation in Multi-Banach Spaces Stabilities of Functional Equations via Fixed Point Technique Measure zero stability problem for the Drygas functional equation with complex involution Fourier Transforms and Ulam Stabilities of Linear Differential Equations Hyers–Ulam stability of a discrete diamond–alpha derivative equation Approximate solutions of an interesting new mixed type additive-quadratic-quartic functional equation. The diverse selection of inequalities covered includes Opial, Hilbert-Pachpatte, Ostrowski, comparison of means, Poincare, Sobolev, Landau, Polya-Ostrowski, Hardy, Hermite-Hadamard, Levinson, and complex Korovkin type. The inequalities are also in the environments of Fractional Calculus and Conformable Fractional Calculus. Applications from this book's results can be found in many areas of pure and applied mathematics, especially in ordinary and partial differential equations and fractional differential equations. As such, this volume is suitable for researchers, graduate students and related seminars, and all science and engineering libraries. The exhibited thirty six chapters are self-contained and can be read independently and interesting advanced seminars can be given out of this book.

Computational Intelligence, Cyber Security and Computational Models. Models and Techniques for Intelligent Systems and Automation

Computational Intelligence, Cyber Security and Computational Models. Models and Techniques for Intelligent Systems and Automation PDF Author: Geetha Ganapathi
Publisher: Springer
ISBN: 9811307164
Category : Computers
Languages : en
Pages : 255
Book Description
This book constitutes the proceedings of the Third International Conference on Computational Intelligence, Cyber Security, and Computational Models, ICC3 2017, which was held in Coimbatore, India, in December 2017. The 15 papers presented in this volume were carefully reviewed and selected from 63 submissions. They were organized in topical sections named: computational intelligence; cyber security; and computational models.

Applied Analysis of Ordinary Differential Equations

Applied Analysis of Ordinary Differential Equations PDF Author: Sanjeeva Balasuriya
Publisher: MDPI
ISBN: 3039217267
Category : Science
Languages : en
Pages : 62
Book Description
One might say that ordinary differential equations (notably, in Isaac Newton’s analysis of the motion of celestial bodies) had a central role in the development of modern applied mathematics. This book is devoted to research articles which build upon this spirit: combining analysis with the applications of ordinary differential equations (ODEs). ODEs arise across a spectrum of applications in physics, engineering, geophysics, biology, chemistry, economics, etc., because the rules governing the time-variation of relevant fields is often naturally expressed in terms of relationships between rates of change. ODEs also emerge in stochastic models—for example, when considering the evolution of a probability density function—and in large networks of interconnected agents. The increasing ease of numerically simulating large systems of ODEs has resulted in a plethora of publications in this area; nevertheless, the difficulty of parametrizing models means that the computational results by themselves are sometimes questionable. Therefore, analysis cannot be ignored. This book comprises articles that possess both interesting applications and the mathematical analysis driven by such applications.

Stability of Functional Equations in Banach Algebras

Stability of Functional Equations in Banach Algebras PDF Author: Yeol Je Cho
Publisher: Springer
ISBN: 3319187082
Category : Mathematics
Languages : en
Pages : 343
Book Description
Some of the most recent and significant results on homomorphisms and derivations in Banach algebras, quasi-Banach algebras, C*-algebras, C*-ternary algebras, non-Archimedean Banach algebras and multi-normed algebras are presented in this book. A brief introduction for functional equations and their stability is provided with historical remarks. Since the homomorphisms and derivations in Banach algebras are additive and R-linear or C-linear, the stability problems for additive functional equations and additive mappings are studied in detail. The latest results are discussed and examined in stability theory for new functional equations and functional inequalities in Banach algebras and C*-algebras, non-Archimedean Banach algebras, non-Archimedean C*-algebras, multi-Banach algebras and multi-C*-algebras. Graduate students with an understanding of operator theory, functional analysis, functional equations and analytic inequalities will find this book useful for furthering their understanding and discovering the latest results in mathematical analysis. Moreover, research mathematicians, physicists and engineers will benefit from the variety of old and new results, as well as theories and methods presented in this book.

Contemporary Studies in Discrete Mathematics

Contemporary Studies in Discrete Mathematics PDF Author: Sudev Naduvath
Publisher: Sudev Naduvath
ISBN:
Category : Mathematics
Languages : en
Pages : 78
Book Description
Volume 2 Issue 1 of the journal "Contemporary Studies in Discrete Mathematics"

Handbook of Functional Equations

Handbook of Functional Equations PDF Author: Themistocles M. Rassias
Publisher: Springer
ISBN: 1493912860
Category : Mathematics
Languages : en
Pages : 396
Book Description
This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with several applications of interdisciplinary nature. The chapters of this handbook focus mainly on both old and recent developments on the equation of homomorphism for square symmetric groupoids, the linear and polynomial functional equations in a single variable, the Drygas functional equation on amenable semigroups, monomial functional equation, the Cauchy–Jensen type mappings, differential equations and differential operators, operational equations and inclusions, generalized module left higher derivations, selections of set-valued mappings, D’Alembert’s functional equation, characterizations of information measures, functional equations in restricted domains, as well as generalized functional stability and fixed point theory.

Functional Equations in Mathematical Analysis

Functional Equations in Mathematical Analysis PDF Author: Themistocles M. Rassias
Publisher: Springer Science & Business Media
ISBN: 1461400554
Category : Mathematics
Languages : en
Pages : 748
Book Description
The stability problem for approximate homomorphisms, or the Ulam stability problem, was posed by S. M. Ulam in the year 1941. The solution of this problem for various classes of equations is an expanding area of research. In particular, the pursuit of solutions to the Hyers-Ulam and Hyers-Ulam-Rassias stability problems for sets of functional equations and ineqalities has led to an outpouring of recent research. This volume, dedicated to S. M. Ulam, presents the most recent results on the solution to Ulam stability problems for various classes of functional equations and inequalities. Comprised of invited contributions from notable researchers and experts, this volume presents several important types of functional equations and inequalities and their applications to problems in mathematical analysis, geometry, physics and applied mathematics. "Functional Equations in Mathematical Analysis" is intended for researchers and students in mathematics, physics, and other computational and applied sciences.