**Author**: V.I. Ferronsky

**Publisher:**Springer Science & Business Media

**ISBN:**940094800X

**Category :**Science

**Languages :**en

**Pages :**371

Skip to content
## The Fashion Journal

# Jacobi Dynamics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. **Download Jacobi Dynamics PDF full book**. Access full book title **Jacobi Dynamics** by V.I. Ferronsky. Download full books in PDF and EPUB format.
## Jacobi Dynamics

**Author**: V.I. Ferronsky

**Publisher:** Springer Science & Business Media

**ISBN:** 940094800X

**Category : **Science

**Languages : **en

**Pages : **371

**Book Description**

This book sets forth and builds upon the fundamentals of the dynamics of natural systems in formulating the problem presented by Jacobi in his famous lecture series "Vorlesungen tiber Dynamik" (Jacobi, 1884). In the dynamics of systems described by models of discrete and continuous media, the many-body problem is usually solved in some approximation, or the behaviour of the medium is studied at each point of the space it occupies. Such an approach requires the system of equations of motion to be written in terms of space co-ordinates and velocities, in which case the requirements of an internal observer for a detailed description of the processes are satisfied. In the dynamics discussed here we study the time behaviour of the fundamental integral characteristics of the physical system, i. e. the Jacobi function (moment of inertia) and energy (potential, kinetic and total), which are functions of mass density distribution, and the structure of a system. This approach satisfies the requirements of an external observer. It is designed to solve the problem of global dynamics and the evolution of natural systems in which the motion of the system's individual elements written in space co-ordinates and velocities is of no interest. It is important to note that an integral approach is made to internal and external interactions of a system which results in radiation and absorption of energy. This effect constitutes the basic physical content of global dynamics and the evolution of natural systems.

## Jacobi Dynamics

**Author**: V.I. Ferronsky

**Publisher:** Springer Science & Business Media

**ISBN:** 940094800X

**Category : **Science

**Languages : **en

**Pages : **371

**Book Description**

This book sets forth and builds upon the fundamentals of the dynamics of natural systems in formulating the problem presented by Jacobi in his famous lecture series "Vorlesungen tiber Dynamik" (Jacobi, 1884). In the dynamics of systems described by models of discrete and continuous media, the many-body problem is usually solved in some approximation, or the behaviour of the medium is studied at each point of the space it occupies. Such an approach requires the system of equations of motion to be written in terms of space co-ordinates and velocities, in which case the requirements of an internal observer for a detailed description of the processes are satisfied. In the dynamics discussed here we study the time behaviour of the fundamental integral characteristics of the physical system, i. e. the Jacobi function (moment of inertia) and energy (potential, kinetic and total), which are functions of mass density distribution, and the structure of a system. This approach satisfies the requirements of an external observer. It is designed to solve the problem of global dynamics and the evolution of natural systems in which the motion of the system's individual elements written in space co-ordinates and velocities is of no interest. It is important to note that an integral approach is made to internal and external interactions of a system which results in radiation and absorption of energy. This effect constitutes the basic physical content of global dynamics and the evolution of natural systems.

## Spatial Dynamics and Pattern Formation in Biological Populations

**Author**: Ranjit Kumar Upadhyay

**Publisher:** CRC Press

**ISBN:** 1000334139

**Category : **Mathematics

**Languages : **en

**Pages : **448

**Book Description**

The book provides an introduction to deterministic (and some stochastic) modeling of spatiotemporal phenomena in ecology, epidemiology, and neural systems. A survey of the classical models in the fields with up to date applications is given. The book begins with detailed description of how spatial dynamics/diffusive processes influence the dynamics of biological populations. These processes play a key role in understanding the outbreak and spread of pandemics which help us in designing the control strategies from the public health perspective. A brief discussion on the functional mechanism of the brain (single neuron models and network level) with classical models of neuronal dynamics in space and time is given. Relevant phenomena and existing modeling approaches in ecology, epidemiology and neuroscience are introduced, which provide examples of pattern formation in these models. The analysis of patterns enables us to study the dynamics of macroscopic and microscopic behaviour of underlying systems and travelling wave type patterns observed in dispersive systems. Moving on to virus dynamics, authors present a detailed analysis of different types models of infectious diseases including two models for influenza, five models for Ebola virus and seven models for Zika virus with diffusion and time delay. A Chapter is devoted for the study of Brain Dynamics (Neural systems in space and time). Significant advances made in modeling the reaction-diffusion systems are presented and spatiotemporal patterning in the systems is reviewed. Development of appropriate mathematical models and detailed analysis (such as linear stability, weakly nonlinear analysis, bifurcation analysis, control theory, numerical simulation) are presented. Key Features Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Concepts are introduced in such a way that readers with a basic knowledge of differential equations and numerical methods can understand the analysis. The results are also illustrated with figures. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Models are analysed for stability of equilibrium points, Turing instability, Hopf bifurcation and pattern formations. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises. The Book is suitable for advanced undergraduate, graduate and research students. For those who are working in the above areas, it provides information from most of the recent works. The text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.

## Classical Dynamics and Its Quantum Analogues

**Author**: David Park

**Publisher:** Springer Science & Business Media

**ISBN:** 3642749224

**Category : **Science

**Languages : **en

**Pages : **333

**Book Description**

The short Heroic Age of physics that started in 1925 was one of the rare occasions when a deep consideration of the question: What does physics really say? was necessary in carrying out numerical calculations. In many parts of microphysics the calculations have now become relatively straightforward if not easy, but most physicists seem to agree that some questions of principle remain to be resolved, even if they do not think it is very important to do so. This situation has affected the way people think and write about quantum mechanics, a gingerly approach to fundamentals and a tendency to emphasize what fifty years ago was new in the new theory at the expense of continuity with what came before it. Nowadays those who look into the subject are more likely to be struck by unexpected similarities between quantum and classical mechanics than by dramatic contrasts they had been led to expect. It is often said that the hardest part of understanding quantum mechanics is to understand that there is nothing to understand; all the same, to think quantum mechanically it helps to have firm mental connections with classical physics and to know exactly what these connections do and do not imply. This book originated more than a decade ago as informal lecture notes [OP, prepared for use in a course taught from time to time to advanced undergraduates at Williams College.

## Quantum Dynamics with Trajectories

**Author**: Robert E. Wyatt

**Publisher:** Springer Science & Business Media

**ISBN:** 0387281452

**Category : **Mathematics

**Languages : **en

**Pages : **408

**Book Description**

This is a rapidly developing field to which the author is a leading contributor New methods in quantum dynamics and computational techniques, with applications to interesting physical problems, are brought together in this book Useful to both students and researchers

## Dynamics of the Earth

**Author**: V. I. Ferronsky

**Publisher:** Springer Science & Business Media

**ISBN:** 9048187230

**Category : **Science

**Languages : **en

**Pages : **299

**Book Description**

In their search for solutions to problems concerning the dynamics of the Earth as a self-gravitating body, the authors have applied the fundamentals found in their book “Jacobi Dynamics” (1987, Reidel). First, satellite observations have shown that the Earth does not remain in hydrostatic equilibrium, which forms the physical basis of modern geodynamics. Secondly, satellite data have established a relationship between the planet’s polar moment of inertia and the potential of the Earth’s outer force field, which proves the most basic point of Jacobi dynamics. This allowed the authors to revise their derivation of the classical virial theorem, introducing the concept of a volumetric force and volumetric moment, and so to obtain a generalized virial theorem in the form of Jacobi’s equation. The main dynamical effects are: the kinetic energy of oscillation of the interacting particles, which explains the physical meaning and nature of gravitational forces; separation of shells of a self-gravitating body with respect to its mass density; differences in angular velocities of the shell’s rotation; continuity in variance of the potential of the outer gravitational force field, together with reductions in the envelope of the interacting masses (volumetric center of gravity); the nature of Earth, Moon and satellite precession; the nature and generating mechanism of the planet’s electromagnetic field; the common nature of gravitational and electromagnetic energy, and other related issues. The work is a logical continuation of the book "Jacobi Dynamics" and is intended for researchers, teachers and students engaged in theoretical and experimental research in various branches of astronomy, geophysics, planetology and cosmogony, and for students of celestial, statistical, quantum and relativistic mechanics and hydrodynamics.

## Computational Mind: A Complex Dynamics Perspective

**Author**: Vladimir G. Ivancevic

**Publisher:** Springer Science & Business Media

**ISBN:** 3540714650

**Category : **Medical

**Languages : **en

**Pages : **698

**Book Description**

This is a graduate–level monographic textbook in the field of Computational Intelligence. It presents a modern dynamical theory of the computational mind, combining cognitive psychology, artificial and computational intelligence, and chaos theory with quantum consciousness and computation. The book introduces to human and computational mind, comparing and contrasting main themes of cognitive psychology, artificial and computational intelligence.

## Gravitation, Inertia and Weightlessness

**Author**: V.I. Ferronsky

**Publisher:** Springer

**ISBN:** 3319322915

**Category : **Science

**Languages : **en

**Pages : **297

**Book Description**

This work discusses the problem of physical meaning of the three main dynamical properties of matter motion, namely gravitation, inertia and weightlessness. It considers that Newtonian gravitation and Galileo’s inertia are the centrifugal effects of interaction energy of a self-gravitating n-body system and its potential field. A self-gravitating celestial body appears to be an excellent natural centrifuge that is rotated by the energy of interacting elementary particles. Weightlessness is a consequence of the centrifugal effect of elementary particles interaction that appears at differentiation of a body matter with respect to density. The author analyzes the problem of creation of mass particles and elements from the elementary particles of “dark matter”, and discusses the basic physics of the Jacobi dynamics from the viewpoint of quantum gravitation. Chapters assert that the fundamentals of Jacobi dynamics completely correspond to conditions of natural centrifuges. The centrifuge is an excellent experimental model for the study of dynamical effects in solving the many body problem. In this book, readers may follow the demonstration of some of those studies and follow derivations, solutions and conclusions that provide a solid basis for further research in celestial mechanics, geophysics, astrophysics, geo- and planetary sciences.

## Hamiltonian Dynamics

**Author**: Gaetano Vilasi

**Publisher:** World Scientific

**ISBN:** 9789812386311

**Category : **Mathematics

**Languages : **en

**Pages : **460

**Book Description**

This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a monograph, the book deals with the advanced research topic of completely integrable dynamics, with both finitely and infinitely many degrees of freedom, including geometrical structures of solitonic wave equations. Contents: Analytical Mechanics: The Lagrangian Coordinates; Hamiltonian Systems; Transformation Theory; The Integration Methods; Basic Ideas of Differential Geometry: Manifolds and Tangent Spaces; Differential Forms; Integration Theory; Lie Groups and Lie Algebras; Geometry and Physics: Symplectic Manifolds and Hamiltonian Systems; The Orbits Method; Classical Electrodynamics; Integrable Field Theories: KdV Equation; General Structures; Meaning and Existence of Recursion Operators; Miscellanea; Integrability of Fermionic Dynamics. Readership: Physicists and mathematicians.

## Classical Dynamics

**Author**: Jorge V. José

**Publisher:** Cambridge University Press

**ISBN:** 1139643398

**Category : **Science

**Languages : **en

**Pages : **

**Book Description**

Advances in the study of dynamical systems have revolutionized the way that classical mechanics is taught and understood. Classical Dynamics, first published in 1998, is a comprehensive textbook that provides a complete description of this fundamental branch of physics. The authors cover all the material that one would expect to find in a standard graduate course: Lagrangian and Hamiltonian dynamics, canonical transformations, the Hamilton-Jacobi equation, perturbation methods, and rigid bodies. They also deal with more advanced topics such as the relativistic Kepler problem, Liouville and Darboux theorems, and inverse and chaotic scattering. A key feature of the book is the early introduction of geometric (differential manifold) ideas, as well as detailed treatment of topics in nonlinear dynamics (such as the KAM theorem) and continuum dynamics (including solitons). The book contains many worked examples and over 200 homework exercises. It will be an ideal textbook for graduate students of physics, applied mathematics, theoretical chemistry, and engineering, as well as a useful reference for researchers in these fields. A solutions manual is available exclusively for instructors.

## Geometrical Dynamics of Complex Systems

**Author**: Vladimir G. Ivancevic

**Publisher:** Springer Science & Business Media

**ISBN:** 140204545X

**Category : **Science

**Languages : **en

**Pages : **824

**Book Description**

Geometrical Dynamics of Complex Systems is a graduate?level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By?complexsystems?,inthis book are meant high?dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds:engineering,physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi?input multi?output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular ?soft complexity philosophy?, we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high?dimensional nonlinear systems and processes of ?real life? can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well?known that linear systems, which are completely predictable and controllable by de?nition ? live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.

journal ebooks, audiobooks, and more

This book sets forth and builds upon the fundamentals of the dynamics of natural systems in formulating the problem presented by Jacobi in his famous lecture series "Vorlesungen tiber Dynamik" (Jacobi, 1884). In the dynamics of systems described by models of discrete and continuous media, the many-body problem is usually solved in some approximation, or the behaviour of the medium is studied at each point of the space it occupies. Such an approach requires the system of equations of motion to be written in terms of space co-ordinates and velocities, in which case the requirements of an internal observer for a detailed description of the processes are satisfied. In the dynamics discussed here we study the time behaviour of the fundamental integral characteristics of the physical system, i. e. the Jacobi function (moment of inertia) and energy (potential, kinetic and total), which are functions of mass density distribution, and the structure of a system. This approach satisfies the requirements of an external observer. It is designed to solve the problem of global dynamics and the evolution of natural systems in which the motion of the system's individual elements written in space co-ordinates and velocities is of no interest. It is important to note that an integral approach is made to internal and external interactions of a system which results in radiation and absorption of energy. This effect constitutes the basic physical content of global dynamics and the evolution of natural systems.

This book sets forth and builds upon the fundamentals of the dynamics of natural systems in formulating the problem presented by Jacobi in his famous lecture series "Vorlesungen tiber Dynamik" (Jacobi, 1884). In the dynamics of systems described by models of discrete and continuous media, the many-body problem is usually solved in some approximation, or the behaviour of the medium is studied at each point of the space it occupies. Such an approach requires the system of equations of motion to be written in terms of space co-ordinates and velocities, in which case the requirements of an internal observer for a detailed description of the processes are satisfied. In the dynamics discussed here we study the time behaviour of the fundamental integral characteristics of the physical system, i. e. the Jacobi function (moment of inertia) and energy (potential, kinetic and total), which are functions of mass density distribution, and the structure of a system. This approach satisfies the requirements of an external observer. It is designed to solve the problem of global dynamics and the evolution of natural systems in which the motion of the system's individual elements written in space co-ordinates and velocities is of no interest. It is important to note that an integral approach is made to internal and external interactions of a system which results in radiation and absorption of energy. This effect constitutes the basic physical content of global dynamics and the evolution of natural systems.

The book provides an introduction to deterministic (and some stochastic) modeling of spatiotemporal phenomena in ecology, epidemiology, and neural systems. A survey of the classical models in the fields with up to date applications is given. The book begins with detailed description of how spatial dynamics/diffusive processes influence the dynamics of biological populations. These processes play a key role in understanding the outbreak and spread of pandemics which help us in designing the control strategies from the public health perspective. A brief discussion on the functional mechanism of the brain (single neuron models and network level) with classical models of neuronal dynamics in space and time is given. Relevant phenomena and existing modeling approaches in ecology, epidemiology and neuroscience are introduced, which provide examples of pattern formation in these models. The analysis of patterns enables us to study the dynamics of macroscopic and microscopic behaviour of underlying systems and travelling wave type patterns observed in dispersive systems. Moving on to virus dynamics, authors present a detailed analysis of different types models of infectious diseases including two models for influenza, five models for Ebola virus and seven models for Zika virus with diffusion and time delay. A Chapter is devoted for the study of Brain Dynamics (Neural systems in space and time). Significant advances made in modeling the reaction-diffusion systems are presented and spatiotemporal patterning in the systems is reviewed. Development of appropriate mathematical models and detailed analysis (such as linear stability, weakly nonlinear analysis, bifurcation analysis, control theory, numerical simulation) are presented. Key Features Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Concepts are introduced in such a way that readers with a basic knowledge of differential equations and numerical methods can understand the analysis. The results are also illustrated with figures. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Models are analysed for stability of equilibrium points, Turing instability, Hopf bifurcation and pattern formations. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises. The Book is suitable for advanced undergraduate, graduate and research students. For those who are working in the above areas, it provides information from most of the recent works. The text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.

The short Heroic Age of physics that started in 1925 was one of the rare occasions when a deep consideration of the question: What does physics really say? was necessary in carrying out numerical calculations. In many parts of microphysics the calculations have now become relatively straightforward if not easy, but most physicists seem to agree that some questions of principle remain to be resolved, even if they do not think it is very important to do so. This situation has affected the way people think and write about quantum mechanics, a gingerly approach to fundamentals and a tendency to emphasize what fifty years ago was new in the new theory at the expense of continuity with what came before it. Nowadays those who look into the subject are more likely to be struck by unexpected similarities between quantum and classical mechanics than by dramatic contrasts they had been led to expect. It is often said that the hardest part of understanding quantum mechanics is to understand that there is nothing to understand; all the same, to think quantum mechanically it helps to have firm mental connections with classical physics and to know exactly what these connections do and do not imply. This book originated more than a decade ago as informal lecture notes [OP, prepared for use in a course taught from time to time to advanced undergraduates at Williams College.

This is a rapidly developing field to which the author is a leading contributor New methods in quantum dynamics and computational techniques, with applications to interesting physical problems, are brought together in this book Useful to both students and researchers

In their search for solutions to problems concerning the dynamics of the Earth as a self-gravitating body, the authors have applied the fundamentals found in their book “Jacobi Dynamics” (1987, Reidel). First, satellite observations have shown that the Earth does not remain in hydrostatic equilibrium, which forms the physical basis of modern geodynamics. Secondly, satellite data have established a relationship between the planet’s polar moment of inertia and the potential of the Earth’s outer force field, which proves the most basic point of Jacobi dynamics. This allowed the authors to revise their derivation of the classical virial theorem, introducing the concept of a volumetric force and volumetric moment, and so to obtain a generalized virial theorem in the form of Jacobi’s equation. The main dynamical effects are: the kinetic energy of oscillation of the interacting particles, which explains the physical meaning and nature of gravitational forces; separation of shells of a self-gravitating body with respect to its mass density; differences in angular velocities of the shell’s rotation; continuity in variance of the potential of the outer gravitational force field, together with reductions in the envelope of the interacting masses (volumetric center of gravity); the nature of Earth, Moon and satellite precession; the nature and generating mechanism of the planet’s electromagnetic field; the common nature of gravitational and electromagnetic energy, and other related issues. The work is a logical continuation of the book "Jacobi Dynamics" and is intended for researchers, teachers and students engaged in theoretical and experimental research in various branches of astronomy, geophysics, planetology and cosmogony, and for students of celestial, statistical, quantum and relativistic mechanics and hydrodynamics.

This is a graduate–level monographic textbook in the field of Computational Intelligence. It presents a modern dynamical theory of the computational mind, combining cognitive psychology, artificial and computational intelligence, and chaos theory with quantum consciousness and computation. The book introduces to human and computational mind, comparing and contrasting main themes of cognitive psychology, artificial and computational intelligence.

This work discusses the problem of physical meaning of the three main dynamical properties of matter motion, namely gravitation, inertia and weightlessness. It considers that Newtonian gravitation and Galileo’s inertia are the centrifugal effects of interaction energy of a self-gravitating n-body system and its potential field. A self-gravitating celestial body appears to be an excellent natural centrifuge that is rotated by the energy of interacting elementary particles. Weightlessness is a consequence of the centrifugal effect of elementary particles interaction that appears at differentiation of a body matter with respect to density. The author analyzes the problem of creation of mass particles and elements from the elementary particles of “dark matter”, and discusses the basic physics of the Jacobi dynamics from the viewpoint of quantum gravitation. Chapters assert that the fundamentals of Jacobi dynamics completely correspond to conditions of natural centrifuges. The centrifuge is an excellent experimental model for the study of dynamical effects in solving the many body problem. In this book, readers may follow the demonstration of some of those studies and follow derivations, solutions and conclusions that provide a solid basis for further research in celestial mechanics, geophysics, astrophysics, geo- and planetary sciences.

This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a monograph, the book deals with the advanced research topic of completely integrable dynamics, with both finitely and infinitely many degrees of freedom, including geometrical structures of solitonic wave equations. Contents: Analytical Mechanics: The Lagrangian Coordinates; Hamiltonian Systems; Transformation Theory; The Integration Methods; Basic Ideas of Differential Geometry: Manifolds and Tangent Spaces; Differential Forms; Integration Theory; Lie Groups and Lie Algebras; Geometry and Physics: Symplectic Manifolds and Hamiltonian Systems; The Orbits Method; Classical Electrodynamics; Integrable Field Theories: KdV Equation; General Structures; Meaning and Existence of Recursion Operators; Miscellanea; Integrability of Fermionic Dynamics. Readership: Physicists and mathematicians.

Advances in the study of dynamical systems have revolutionized the way that classical mechanics is taught and understood. Classical Dynamics, first published in 1998, is a comprehensive textbook that provides a complete description of this fundamental branch of physics. The authors cover all the material that one would expect to find in a standard graduate course: Lagrangian and Hamiltonian dynamics, canonical transformations, the Hamilton-Jacobi equation, perturbation methods, and rigid bodies. They also deal with more advanced topics such as the relativistic Kepler problem, Liouville and Darboux theorems, and inverse and chaotic scattering. A key feature of the book is the early introduction of geometric (differential manifold) ideas, as well as detailed treatment of topics in nonlinear dynamics (such as the KAM theorem) and continuum dynamics (including solitons). The book contains many worked examples and over 200 homework exercises. It will be an ideal textbook for graduate students of physics, applied mathematics, theoretical chemistry, and engineering, as well as a useful reference for researchers in these fields. A solutions manual is available exclusively for instructors.

Geometrical Dynamics of Complex Systems is a graduate?level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By?complexsystems?,inthis book are meant high?dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds:engineering,physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi?input multi?output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular ?soft complexity philosophy?, we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high?dimensional nonlinear systems and processes of ?real life? can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well?known that linear systems, which are completely predictable and controllable by de?nition ? live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.