The Art of Error Correcting Coding PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download The Art of Error Correcting Coding PDF full book. Access full book title The Art of Error Correcting Coding by Robert H. Morelos-Zaragoza. Download full books in PDF and EPUB format.

The Art of Error Correcting Coding

The Art of Error Correcting Coding PDF Author: Robert H. Morelos-Zaragoza
Publisher: John Wiley & Sons
ISBN: 0470035692
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
Building on the success of the first edition, which offered a practical introductory approach to the techniques of error concealment, this book, now fully revised and updated, provides a comprehensive treatment of the subject and includes a wealth of additional features. The Art of Error Correcting Coding, Second Edition explores intermediate and advanced level concepts as well as those which will appeal to the novice. All key topics are discussed, including Reed-Solomon codes, Viterbi decoding, soft-output decoding algorithms, MAP, log-MAP and MAX-log-MAP. Reliability-based algorithms GMD and Chase are examined, as are turbo codes, both serially and parallel concatenated, as well as low-density parity-check (LDPC) codes and their iterative decoders. Features additional problems at the end of each chapter and an instructor’s solutions manual Updated companion website offers new C/C ++programs and MATLAB scripts, to help with the understanding and implementation of basic ECC techniques Easy to follow examples illustrate the fundamental concepts of error correcting codes Basic analysis tools are provided throughout to help in the assessment of the error performance block and convolutional codes of a particular error correcting coding (ECC) scheme for a selection of the basic channel models This edition provides an essential resource to engineers, computer scientists and graduate students alike for understanding and applying ECC techniques in the transmission and storage of digital information.

The Art of Error Correcting Coding

The Art of Error Correcting Coding PDF Author: Robert H. Morelos-Zaragoza
Publisher: John Wiley & Sons
ISBN: 0470035692
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
Building on the success of the first edition, which offered a practical introductory approach to the techniques of error concealment, this book, now fully revised and updated, provides a comprehensive treatment of the subject and includes a wealth of additional features. The Art of Error Correcting Coding, Second Edition explores intermediate and advanced level concepts as well as those which will appeal to the novice. All key topics are discussed, including Reed-Solomon codes, Viterbi decoding, soft-output decoding algorithms, MAP, log-MAP and MAX-log-MAP. Reliability-based algorithms GMD and Chase are examined, as are turbo codes, both serially and parallel concatenated, as well as low-density parity-check (LDPC) codes and their iterative decoders. Features additional problems at the end of each chapter and an instructor’s solutions manual Updated companion website offers new C/C ++programs and MATLAB scripts, to help with the understanding and implementation of basic ECC techniques Easy to follow examples illustrate the fundamental concepts of error correcting codes Basic analysis tools are provided throughout to help in the assessment of the error performance block and convolutional codes of a particular error correcting coding (ECC) scheme for a selection of the basic channel models This edition provides an essential resource to engineers, computer scientists and graduate students alike for understanding and applying ECC techniques in the transmission and storage of digital information.

Error Correction Codes for Non-Volatile Memories

Error Correction Codes for Non-Volatile Memories PDF Author: Rino Micheloni
Publisher: Springer Science & Business Media
ISBN: 1402083912
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Nowadays it is hard to find an electronic device which does not use codes: for example, we listen to music via heavily encoded audio CD's and we watch movies via encoded DVD's. There is at least one area where the use of encoding/decoding is not so developed, yet: Flash non-volatile memories. Flash memory high-density, low power, cost effectiveness, and scalable design make it an ideal choice to fuel the explosion of multimedia products, like USB keys, MP3 players, digital cameras and solid-state disk. In ECC for Non-Volatile Memories the authors expose the basics of coding theory needed to understand the application to memories, as well as the relevant design topics, with reference to both NOR and NAND Flash architectures. A collection of software routines is also included for better understanding. The authors form a research group (now at Qimonda) which is the typical example of a fruitful collaboration between mathematicians and engineers.

Error-Correction Coding and Decoding

Error-Correction Coding and Decoding PDF Author: Martin Tomlinson
Publisher: Springer
ISBN: 3319511033
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of th ese codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field. This book is open access under a CC BY 4.0 license.

Introduction of the Art of Error Correcting Coding

Introduction of the Art of Error Correcting Coding PDF Author: Summer Newton
Publisher: Createspace Independent Publishing Platform
ISBN: 9781542854764
Category :
Languages : en
Pages : 26
Book Description
The history of error correcting coding (ECC) started with the introduction of the Hamming codes (Hamming 1974), at or about the same time as the seminal work of Shannon (1948). Shortly after, Golay codes were invented (Golay 1974). These two first classes of codes are optimal, and will be defined in a subsequent section. Figure 1.1 shows the block diagram of a canonical digital communications/storage system. This is the famous Figure 1 in most books on the theory of ECC and digital communications (Benedetto and Biglieri 1999). The information source and destination will include any source coding scheme matched to the nature of the information. The ECC encoder takes as input the information symbols from the source and adds redundant symbols to it, so that most of the errors - introduced in the process of modulating a signal, transmitting it over a noisy medium and demodulating it - can be corrected (Massey 1984; McEliece 1977; Moon 2005).

Quantum Information Processing, Quantum Computing, and Quantum Error Correction

Quantum Information Processing, Quantum Computing, and Quantum Error Correction PDF Author: Ivan Djordjevic
Publisher: Academic Press
ISBN: 0128219874
Category : Science
Languages : en
Pages : 838
Book Description
The Second Edition of Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach presents a self-contained introduction to all aspects of the area, teaching the essentials such as state vectors, operators, density operators, measurements, and dynamics of a quantum system. In additional to the fundamental principles of quantum computation, basic quantum gates, basic quantum algorithms, and quantum information processing, this edition has been brought fully up to date, outlining the latest research trends. These include: Key topics include: Quantum error correction codes (QECCs), including stabilizer codes, Calderbank-Shor-Steane (CSS) codes, quantum low-density parity-check (LDPC) codes, entanglement-assisted QECCs, topological codes, and surface codes Quantum information theory, and quantum key distribution (QKD) Fault-tolerant information processing and fault-tolerant quantum error correction, together with a chapter on quantum machine learning. Both quantum circuits- and measurement-based quantum computational models are described The next part of the book is spent investigating physical realizations of quantum computers, encoders and decoders; including photonic quantum realization, cavity quantum electrodynamics, and ion traps In-depth analysis of the design and realization of a quantum information processing and quantum error correction circuits This fully up-to-date new edition will be of use to engineers, computer scientists, optical engineers, physicists and mathematicians. A self-contained introduction to quantum information processing, and quantum error correction Integrates quantum information processing, quantum computing, and quantum error correction Describes the latest trends in the quantum information processing, quantum error correction and quantum computing Presents the basic concepts of quantum mechanics In-depth presentation of the design and realization of a quantum information processing and quantum error correction circuit

Combining Codes and Digital Modulation in the Art of Error Correcting Coding

Combining Codes and Digital Modulation in the Art of Error Correcting Coding PDF Author: Danielle Newton
Publisher: Createspace Independent Publishing Platform
ISBN: 9781542854573
Category :
Languages : en
Pages : 30
Book Description
In discussing SDD, attention was focused on binary transmission, that is, using two possible transmitted symbols {-1, +1}. Let the Nyquist bandwidth of a transmission (or storage) signal be the rate Rs at which symbols are transmitted (or stored). For binary transmission, the two values of a bit, 0 and 1, are assigned to two values of the transmitted symbol, +1 and -1, respectively. Therefore, Rs bits/second require a Nyquist bandwidth of Rs Hz. The spectral efficiency μ of a binary transmission system equals 1 bit/sec/Hz (or 1 bit/symbol). Coded modulation is the joint design of error correcting codes and digital modulation formats to increase the bandwidth efficiency of a digital communication system.

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction PDF Author: Ivan Djordjevic
Publisher: Academic Press
ISBN: 012385492X
Category : Science
Languages : en
Pages : 600
Book Description
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction – everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

The Art of Error Correcting Coding

The Art of Error Correcting Coding PDF Author: Robert H. Morelos-Zaragoza
Publisher: Wiley
ISBN: 9780471495819
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
The Art of Error Correcting Coding provides a comprehensive coverage of the basic techniques of error concealment. It addresses the need for selecting, implementing and simulating algorithms for the encoding and decoding of codes used for error correction and detection. This practical approach uses simple and easy to follow numerical examples to describe the basic concepts of a particular coding or decoding scheme. Basic analysis tools are provided throughout to help in the assessment of the error performance block and convolutional codes of a particular Error Correcting Coding (ECC) scheme for a selection of the basic channel models. * Provides a complete treatment of important decoding algorithms including errors-and-erasures decoding of BCH and Reed-Solomon codes for any set of consecutive zeros and any length * Describes Viterbi decoding and the key implementation issues * Includes soft-output decoding algorithms, MAP, log-MAP, Max-log-MAP, belief propagation and ordered statistics * Discusses new reliability-based algorithms such as GMD and the Chase algorithm with soft outputs * Examines turbo codes, both serially and parallel concatenated, as well as low-density parity-check (LDPC) codes and their iterative decoders * Features a companion website providing computer programs written in C language, to help understanding and implementing basic ECC techniques This volume provides an indispensable tool for understanding and applying ECC techniques in transmission and storage of digital information. Engineers, computer scientists and graduate students alike, will all benefit from such a practical introductory approach.

Information Theory and Coding - Solved Problems

Information Theory and Coding - Solved Problems PDF Author: Predrag Ivaniš
Publisher: Springer
ISBN: 3319493701
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
This book is offers a comprehensive overview of information theory and error control coding, using a different approach then in existed literature. The chapters are organized according to the Shannon system model, where one block affects the others. A relatively brief theoretical introduction is provided at the beginning of every chapter, including a few additional examples and explanations, but without any proofs. And a short overview of some aspects of abstract algebra is given at the end of the corresponding chapters. The characteristic complex examples with a lot of illustrations and tables are chosen to provide detailed insights into the nature of the problem. Some limiting cases are presented to illustrate the connections with the theoretical bounds. The numerical values are carefully selected to provide in-depth explanations of the described algorithms. Although the examples in the different chapters can be considered separately, they are mutually connected and the conclusions for one considered problem relate to the others in the book.

Iteratively Decodable Codes on the Art of Error Correcting Coding

Iteratively Decodable Codes on the Art of Error Correcting Coding PDF Author: Alexander Carter
Publisher: Createspace Independent Publishing Platform
ISBN: 9781542854788
Category :
Languages : en
Pages : 34
Book Description
Iterative decoding may be defined as a technique employing a soft-output decoding algorithm that is iterated several times to improve the error performance of a coding scheme, with the aim of approaching true maximum-likelihood decoding (MLD) with least complexity. When the underlying error correcting code is well designed, increasing the number of iterations results in an improvement of the error performance. Iterative decoding techniques date back to 1954 with the work of Elias (1954) on iterated codes. Later, in the 1960s, Gallager (1962) and Massey (1963) made important contributions. Iterative decoding in those days was referred to as probabilistic decoding. The main concept was then, as it is today, to maximize the a posteriori probability of a symbol being sent, given a noisy version of the coded sequence.